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Performance and Limitations of Decomposition-
Based Parameter-Extraction Procedures
for FET Small-Signal Models

Cornell van NiekerkStudent Member, IEEEANd Petrie MeyerMember, IEEE

Abstract—A recently proposed optimizer-based parameter-
extraction technique using adaptive decomposition is subjected
to a systematic and rigorous evaluation. The technique is shown
to be robust and accurate under varying starting conditions. A 5
study of convergence performance based on decomposition theory Gate
and test results is presented. Robustness tests are used to show
that commonly used statistical descriptions such as mean and
standard deviation are inadequate for presenting these types of
test data.

Index Terms—becomposition, MESFET, parameter extraction,
optimizer.

I. INTRODUCTION

Source

HE design and analysis of millimeter-wave nonlinear
circuits increasingly require accurate nonlinear modelgig. 1. The standard 13-element MESFET model.
Most of the currently available models in computer-aided

design (CAD) packages are of the equivalent-circuit type andyy kompa. Both these extraction methods only optimize
despite efforts to develop black-box and fast physical mode{ﬁe extrinsic components of the model (shown in Fig. 1)

it is expected that these models will still be prominentforsonwhne using analytical methods to determine the intrinsic
time. This is mainly due to their computational ef“ficiencycornloonents Both achieve good results

availability in commercial programs, and the ease with which van Niekerk and Meyer [5] recently demonstrated a very

theykcan be mte%rated Into gmstw:cg{ design t:echnlques. i robust and powerful parameter-extractor based on the method
A key step in the construction of lumped-element nonlinegy s by Kondoh [6]. Kondoh showed that good results can
models is the extractlor_1 of the s_mall-5|gnal eq_uwalent circylls 4chieved by breaking the optimization problem into eight
from s-parameters at different bias settings. Fig. 1 shows thfhfnctions and optimizing the different model elements only
13'9'?me”t small-signal model t_hat s most often uspd Bth respect to specific subfunctions. The eight subproblems
dhgscnbe tlhe GaAsfMESFET: Until recently, the extraction ofig jteratively repeated in a specific order until the model
this model was performed using standard gradient and rand@g,ents have converged to their final values. Van Niekerk and
optimizers [1] or with the aid of analytical techniques [2]yjever extended this method by using the maximum number
The first approach can lead to nonphysical and nonunigyeg ,nroblems, and optimizing them in a sequence in which
solutions, Wh',le the second relies on additional measurement ey is calculated with a principle components sensitivity
steps.or special structures. Analytical methods. are faster tmlysis. The decomposition process used in the new procedure
optimizer-based methods, but they are susceptible to measyes, o efore, adaptive, and not based on experimentation, such
ment errors and their implementation is device specific. as in [6]

In the last few years, new parameter-extraction methodsy, rigorous test results of decomposition-based parameter-
have bt_'-}en published, which strive to overcome_these “m'@’(traction algorithms have been presented in the literature. In
t|0ps. Lin a”“,' Kompg ,[3] d.emonstra'Fed an extraction techniq Qrticular, the effects of starting values and the final distribu-
which, by using a bidirectional multiplane search, reduces the,, ¢ results have been largely neglected. In this paper, the
dimensions of the optimization problem to improve robustnegsg, 15 of such tests are presented for the algorithm proposed
and gﬁ|C|en9y. Shirakawat al. [4J pubhshed an extraction in [5], and for the original algorithm proposed by Kondoh
technique with some features similar to the method of L'fé]. Robustness tests are performed using a large number of

Manuscript received September 17, 1997; revised July 16, 1998. randomly chosen element starting values for each extraction.
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In addition, a detailed look at the fundamental convergence

mechanisms is presented, as the convergence behavior of

TABLE |
ELEMENT VALUES FOR TWO EXAMPLES

decomposition-based optimization has only been touched on Transistor 1 Transistor 2
very lightly in_ the past. It is sh_own why these algorithms Parameter Fu:stlzon Eloment | Opt | Floment | Opt
display superior performance with respect to problems like Value | Order | Value | Order
local minima. 1 Le (nH) Sy, 0.184 | Cgd 01 Ced
Finally, a general discussion of the principle components’ .  gq ) S, 0.15 Cas 13 Ces
sensitivity analysis—the key to the basic algorithm—is also 3 ¢, p) S, 028 Cds on Cds
presented. 4 R Su, 523 T 25 T
S Cgd (pF) S, 0.0095 Ls 0.025 Ls

Il. THE THEORY OF DECOMPOSITIONBASED 6 gm(ms) S, 245 Lg 50 Lg
PARAMETER EXTRACTION . (%) S, 5 Rs 0.85 Ld

Decomposition is defined as a process by which a function 8  Rds@ Ss 552 Ld 188 Rs
that is to be optimized is broken up into several subfunctions. o  cdseR S, | 00988 | Rd 0.049 Rd
The independent variables of the function are divided into 1 ra©@ S 4 am 13 gm
groups according to their influence on a particular subfunction. |1 vLdmm s, 0151 | Rds 0.1 Rds
Should the:th variable have its largest influence on tjth 2. Rs@ S, Is Ri 13 Rg
subfunction, it is assigned to that function. The subfunctions 5 (. S, | 000ss | Re 008 Ri
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are optimized in a specific order, and only with respect to the
variables assigned to them. This order is repeated until the
whole problem has converged to its final value. of model elements. Table | shows the assignment of model
In the FET parameter-extraction problem, the global-erretements to the different suboptimization problems.

function that is to be optimized is defined as The different suboptimization problems are not linearly

independent [7]. In order to ensure convergence, they have to
be solved in a specific sequence, which is repeated until all the
model elements have converged to their final values. Kondoh
determined his optimization sequence through experimentation
[6], while Bandler and Zhang demonstrated an adaptive algo-

N

F(z) = Z ¢ (@2 (1)

i=1

where

1 1 : . T ;
ei(z) = — | R (z) — S| + — | R¥(z) — 2| rithm that determlnes the optimization sequence as a function
o111 o1 of the subfunction error and dimensions.
1 12 12 1 29 29 In the new decomposition algorithm, the order of op-
+a—12|Ri (@) =57 |+0—_22|Ri @) =57 @ timization is based on the sensitivity of the global-error

nction to the model elements. A principle components

. . f
In ((jl)f gi(@ Is the dlffefrence between t.hehmeasured arEgensitivity analysis [5], [8] is used to order the model elements
modeleds-parameters at frequency pointz Is the parameter in descending order of their influence on the global-error

vector containing the element values of the circuit shown : Lo L
) . ) ._function. The suboptimization problems are then optimized
Fig. 1, andN is the number of frequency points. Equatior P P P

L ; " this order. This allows the dominant model elements to get
(2) shovtvs ;he dter:‘|n|t|on Oéi(%)’ wheref.i |stt?e modeled:- tclose to their correct values faster, providing the other elements
Parag]e_er i1 el_metfasure —ptaratme erlatl trr? quency_tp(()jln V\%i'[h a better chance of converging.
t, ando 1S a normafization constant equalto the magnitude ot 1, sensitivity analysis used to calculate the order of

thirllarggift measu[)est:parameterhval;n;.] f d ogetimization was presented by Pattersziral. [8] to improve
e diierence between each of The four measure conditioning of a conventional multidimensional gradient

modeled s-parameters is defined as a subfunction. Bandlgéarch as performed on a global-error function. In order to

and Zhang [7] developed an automated approach for aSSignH?Qtinguish between maxima, minima, and saddle points, a

model elements to the different subfunctions using a Moni& - nd-order analysis was used. The error funcfign) is
Carlo analysis, wh|ch confirmed the assignment Qf moq panded in a Taylor series around the optimal point._Equation
elements to subfunctions proposed by Kondoh. This assagj shows this series. truncated at the second term. wieise

IrFe_nt_has tbe(:nt retaltnec:hw; tKhe (;’“r:redr?; ext:actl?_n _methl & optimal set of element values at whikXy) is a minimum,
is important to note that Kondoh did not optimize all, ¢ + i 3 small difference:

the model parameters across the complete set of frequency

points. This subdivision in frequency is not used in the new 1

method of Van Niekerk and Meyer [5] since it was found to F(z* + 6z*) = F(z*) + 6z’ VF(z*) + ~62" V> F (z* )6z
not provide any accuracy improvements. Kondoh subdivided 2 3)
his optimization problem to obtain eight subproblems. The

level of decomposition was extended in the new optimization _ ) ) )
procedure to allow for maximum decomposition. Every moddine Hessian matri¥’? F'(z*) can be approximated with
element is optimized on its own, leading to a number of one-

dimensional suboptimization problems equal to the number H=2J'J 4)
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where J is the Jacobian matrix [8]. The Jacobian matrix is

defined as
r 861 861 861 T
dey  Oeg Jdes
gy  den Dy
Loxy  Oxa o Oxj -

wheree; is defined in (2) ands; to z; represent the model
elements shown in Fig. 1.
Patterson shows that the eigenvalues of the Hessian ma-

trix determines the sensitivity of the error function to thé&ig. 2. Normalized amplitude of the Jacobian matrix calculated for the first

model clements, with those to which the error function e ien fTeble | Therows conespond i e secuence of e mocel

the most sensitive, corresponding to the largest eigenvalu@sresponding to the intrinsic capacitors. (b) The matrix with these columns

By looking at the largest components of the eigenvectors &f to zero to show the inductors and the channel delag the next level

the different eigenvalues, the model elements can be ordefbgominant elements.

from the most to least sensitive. The principle components’

sensitivity analysis can, therefore, be viewed as the study @&pacitors are always dominant, followed byand the ex-

the eigenvalues and eigenvectors of the Hessian matrix. &Kimsic inductances. The intrinsic and extrinsic resistors and

example illustrating how this is done is presented in [5]. the transconductance are always the least sensitive elements

in the model. Table | presents the optimization sequences for

1. EVALUATION PROCEDURE two MESFET's as an example.

This behavior can be explained by a detailed look at the

rinciple components’ sensitivity analysis, which is normally

rewed as a study of the Hessian matrix, but which is very

The aim of this paper is to provide a rigorous evaluatio
of the performance of the method proposed by Van Nieke

and Meyer [5], together with a comparison of the results wi milar to the Karhunen-lave (KL) transformation used

earlier algorithms. In order to achiev_e this, the algorithm wags digital signal processing to identify the less important
]Eest;zd W'th .S|mulated datgn to lpro(\jn:e an absolute mgaSldﬁﬁensions of a problem. The KL transform is applied to a data
or etermlplng accuracy. Simulated data was generate USIH1rix consisting ofD-dimensional vectors, which describe

the model in Fig. 1 and the element values shown in Tableal'system This matrix does not need to be symmetrical. A
'I;he e_letmenlt vaIu(Jleirlllstel:dng(;'za; Ietl desctrlbeg t:le F.LR01f6 essian matrix is generated by premultiplying the data matrix
(transistor 1) an € (transistor 2) devices OWith its transpose, followed by an eigenvector/eigenvalue

Fujitsu: The s-parameters were generated at 40 frequen%alyss. As this process is, in effect, used to analyze the data

po1|_nts, from 1 to 40 (?HZ' d to d . h matrix, the principle components’ sensitivity analysis can, in
wo fests were performed to determine the accuracy apdjqjj vein, be said to analyze the Jacobian matrix.

robustness of the extraction procedure. In the first test, 1 _OReIating the sensitivities to the Jacobian matrix has the

rand_o m sta_rtm_g V‘?"“es were chasen in the search Space_u%fagantage of allowing a one-to-one correspondence between
a uniform distribution. The search space ranged from 0.1 timg;

L . ) . & rows of the matrix and the model elements, something
to five times the nominal parameter values given in Table

) . ) Which is lost in the calculation of the Hessian matrix. Fig. 2
An extraction was performed using each set of starting Valuesﬁ'ows the normalized amplitude of a representative Jaco-

QS'T”T ]E)rocer:juret W?.S ustﬁd f(.)r tlhe second ttESt’ but @bn matrix. It is clear that the elements with the largest
e start of each extraction, the simulategarameters were frequency dependence corresponds to the most prominent

contaminated with noise. The noise was defined to haVecB‘lumns of the matrix, which will account for their prominence

Gaussian magnitude distribution and a uniform phase dlstm- the sensitivity analysis. In contrast, the importance of the

Eutmn l:;etv;eecri]g a.nﬁt].ﬂ radflazr;/s. 'If'he ma%“étUd? Sh'smbUt'onfrequency-independent elements, such as the resistors and the
as a standard deviation of <7 of magnitude ot the measurt?%sconductance, is related more to their position in the model

s—p_)rahrameteli. Trfutahsector;d test gsedq 5(;)Odrgn§jom sttar:rtmg V?Ilé% their size. The position of a model element in the order of
€ results ot the study can be divided between tNoSe eIy, ation is, therefore, determined by the following three
to the optimization sequence, convergence of the algorith ctors (in order of importance):

and the accuracy of the final values. 1) frequency dependence of the element value;
2) magnitude of the element value;
3) position of the element in the model.
When the optimization sequences of different examplesThese three criteria provides us with rough indicators
are compared with one another, a basic pattern emerggs.to how the sensitivity analysis works and what really
LFyjitsu Microwave Semiconductors Databodkujitsu Compound Semi- Influences the order of optimization. The effect of the starting
conductors Inc., San Jose, CA, 1994. point of the search is not included in this discussion, but

IV. THE OPTIMIZATION SEQUENCE
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Fig. 3. The change in the global error (complete objective function) as the 04 3 10 15 20 25 30 35 40 45
search progresses. Iteration Number N

. . . Fig. 4. The change in the element values for three typical parameters of the
differences in starting values and measured data do hag&iement model as the search progresses.

small influences on the order of optimization. This is because
¢; is also a function of both the model element values and,, 1 --.. ‘ ‘ I ‘ 0

S
j
/
\

the measured data [see (2)]. § 08 B — - 04 jterm“’"l - "
a8} o " Start - =T -
V. CONVERGENCE CONSIDERATIONS é 0160 02 04 06 08 ?o 02 04 06 08
No conclusive theoretical work is available to explain E 0s ™ 4{;/ 03 lteration &
why the decomposed optimization process converges to thg 'J"’ﬂe‘ra[i;n{z S ' I
correct solution. Kondoh [6] found that the order in which the fﬁ % 02 04 06 08 O T2 04 0o 08
functions are to be optimized is crucial for convergence, andg ! Heration 5 b Heration 6
Bandler and Zhang [7] showed that this was due to the fact_:g 05 0_5“1;
that the defined subfunctions are not linearly independent. =2 e NS
In this section, new results concerning the convergence 0}3 ?Q 02 01.4 06 08 ?o Cs L 15
the decomposition-based algorithm are presented. The con?z | teration7 ' lteration 11
vergence of the algorithm can be divided into two regions.TE‘S 0-5'\‘ 03
In the first region, there occurs what can best be describeg , - - — of o —
as the preconvergence maneuvering of the model element§ ° cg’s (pF) 0 Cg’s (pF)

During this phase, the m0d6|-e|emen-t values change qUiCkll—)(' 5. The change in the landscape seen by the search routine for the
covering the whole search space in no apparent patteé hént('gs. The y-axis represents both the subfunction- and global-error
This is accompanied by large increases and decreases infiiR@ion values, both normalized to one (— — —: subfunction error, —: global
global error, giving the impression that the search routir&or).
is hill climbing. During this phase, the model elements will
frequently run into the boundaries of the optimization spac&e global-error function that is evident during the first few
and may stay there for more than one iteration of the searé§rations of the search.
This behavior is illustrated in Figs. 3 and 4. Fig. 5 shows how The second phase of the algorithm’s convergence is also
the global objective function differs from the subfunction thagvident from Figs. 3 and 4. During this part, the algorithm
is being optimized during phase one, and how rapidly the shagverges smoothly to the final solution. A comparison of
of the objective function changes from iteration to iteratiothe normalized subfunction and the normalized global-error
All the element values, except one, were fixed at their valfignction in Fig. 5 shows that they approximate each other
after the shown number of iterations, and the free variable the region of the solution, indicating that by minimizing
was varied around its current value. Fig. 5 contains both tHe subfunction, the algorithm also minimizes the global-error
normalized global and subfunction errors as a function of tfiénction in the second phase of convergence.
free variable and, thus, the optimization landscape seen by thd he decomposed optimization algorithms are by no means
algorithm at that iteration. globally convergent and can still be caught in local minima
The behavior during phase one can be understood fyhe search is started too far from the global minimum. The
looking at the relationships between the elements. Since fig¢itines are, however, far more robust than most conventional
dominant model elements are initially far from their corregiearch algorithms, and are capable of covering a far larger
values, they will have a large influence on one anoth&farch area. This robustness is due to the following reasons.
and on the other less dominant model parameters. This willl) The functions that are optimized are less complex than
increase the dependance of the decomposed functions on one the global-error function. This reduces the amount of
another, explaining the violent changes in element values and local minima that pose a danger to the extraction process
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TABLE 1l
THE AVERAGE AND MAXIMUM % ERROR IN 100 EXTRACTIONS OF -
THE 13-EEMENT FET MoDEL FROM IDEAL AND NoISY DATA 2
Test 1 - 1deal Data Test 2 - Noisy Data :
Transistor { ‘I'ransistor 2 Transistor | Transistor 2 8
Parameter Avg. Max Avg Max. | Avg Max Avg Max -
Ces 0021 | 0.16 0.51 437 | 0053 | 111 016 711 50
Cad 001l | 00s2 | 060 | 335 | 0047 | 163 | 019 | 643 Cxtraction Number N Extraction Number N
Cds 0.0042 | 0.028 0.74 Sl 0.02 1.44 1.50 8.24 50 30
gm 00019 | 014 | 00ss | 530 | 0017 | 1o | 070 | 755 40- Correct Value: 0.28 pF - 20 Correct Value: 5 ps
T 0.013 0.12 1.50 7.48 0.039 176 1.61 15.62 30-
Ri 164 | 292 | s00 |89901| 182 |1586| 446 {9610 20 10
Rds 0011 [0057 | 041 | 406 | 0042 | 550 | 022 | 777 10- [ : } )
Ly 0.0072 [ 0015 | 0007 | 049 | 0032 | 109 | 00890 | 1.68 ()0.2795 6“1%@‘””“ [@2805 0281 04.995 J;Jﬂ ﬂ@blﬁ 501
Ld 0.0012 | 001 1.00 435 | 0032 1.75 153 590 Ces (pl) T(ps)
L3 0025 0062 ) 0055 | 025 | 005 358 | 0057 | 2 Fig. 6. Converge diagram and histogram for model elemé€ftsandr for
Rg 5062 | 398 | 1025 | 1048 | 5636 | 400 | 330 | 1186 test one. Circles indicate the starting values for each extraction and the solid
Rd 016 | 035 | 2325 |9ss1| 025 | 9ss | 2049 | 1423 line the final values.
Rs 050 | 393 | 473 |ele2| 053 | 219 | 454 |[8546
30 : 0.8
) o, ~ \ ﬁ§
- . . P ~ 0.6 “‘3\ ¢
since the subfunctions are not evaluated simultaneouslys205 |- ° a
and the global-error function is not used for any deci- E o e &00'4 i
sions during the search. - o2l
2) The functions being optimized display a high degree of T ;\“‘ U\u‘, °
sensitivity to the model elements associated with them. % ° % 30~ 100 %
3) The order in which the subfunctions are repeatedly opti- Lxtraction Number N Extraction Number N
mized leads to highly consistent extraction results. There 50 50
are a large group of optimization sequences that will ~ 40- comeet Value: 523 Ohm 40| Correct Value: 0.15 Ohm
allow the decomposition-based optimization procedure 30 30
to converge, but they are not equivalent in terms of ;. 20
the accuracy that can be obtained and the amount of ;. 10
iterations needed for the routine to converge. O DT PR Y1 S | RTINS
3 3.5

The first robustness experiment was also repeated using
a larger search space. Model-element starting values were
chosen in the ranges of 0.05-10 times the nominal elemé&f 7- Converge diagram and histogram for model eleméftand 2, for

. . test one. Circles indicate the starting values for each extraction and the solid
values and 0.033-20 times the nominal element values. Bq?q the final values.
ranges caused some of the extractions in the experiments not

to converge to the correct answer. These extractions were eg/final value. Ideally, one should see a perfect horizontal line
to identify since most of the model elements would take qgy the final values, representing no variation in the extracted
values close to the optimization boundaries and, in some Casggye. The variation of the solid line from the perfect straight

the final global error was larger than the global error at thge gives a clear graphical view of the sensitivity of the final
start of the search. However, better than 90% of the extractiqpsiyes to the starting values.

converged to the correct element values.

5 0.5
Ri Q) Re (@)

Results are presented for the first test for two dominant

VI. ACCURACY OF FINAL VALUES model elements({(y, and ) and for the two least sensitive
elements &; andR,) for transistor one. The channel resistance

A. Results of the Principle Components’ R; and the parasitic gate resistarfggare of particular interest
Sensitivity-Analysis-Based Extraction Procedure because of their positions in the model and their electrical

values of the model elements for both tests for the tw¢plues very difficult [8].
transistor examples defined in Table I. Both the maximum andA study of the information obtained from various extraction
mean error are provided. The accuracy of the method is cle@¥amples revealed the following.

A novel representation of the performance of the algorithm 1) Not all parameter-extraction problems can be solved
is shown in Figs. 6 and 7. Theaxes represent 100 extractions with equal accuracy. This is similar to conclusions
performed during the tests, while theaxes represent the reached by Curtise [1].
element values. Each circle shows the starting value for that2) All the parameters, with the exception &f, could be
particular element for one search, while the solid line shows extracted with high accuracy.
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TABLE 1l 60 -
THE AVERAGE AND MAXIMUM % ERROR IN 100 EXTRACTIONS OF
THE 13-BELEMENT FET MoDEL FROM PERFECT AND NOISY 401 Correct Value: 0.2 pF )
DATA WHEN R4 |Is FiIxeD AT ITs CORRECT VALUE
Test 1 - Perfect Data Test 2 - Noisy Data 201 -
Transistor 1 ‘I'ransistor 2 Transistor | Transistor 2
. ax . . ) ) ] 0 ol | |
Parameter | Avg. | Max | Avg | Max | Ave | Max | Avg | Max 0.194 0.196 0.198 02 0202 0204 0206 0.208
Cgs 00014 | 00095 | 0.022 | 037 |00322 ] 111 011 2.66 Cgs (pF)
Cad 0.0008 | 0.0094 | 021 042 |00035 | 1.75 022 334 80
Cds 0002 | 00121 | 091 489 | 00219 | 143 1.51 7.72 60 Correct Value: 2.5 Q
om 0.0009 | 0.0059 | 037 222 00012 | 1.07 0.66 445 40 B
T 0.0028 [ 00117 | 101 s27 | 00234 | 1.78 173 12.51
Ri 0.0002 | 0.0028 | 216 878 100023 | 5.60 275 | 2149 20 ﬂ‘ W
Rds 00071 | 00372 | 0.1 118 | 00605 | 570 027 297 0 e N
1.8 2 2.2 2.4 2.6 2.8
Lg 0.0005 | 0.0058 | 0034 | 014 | 00257 | 1.10 0.12 172 Ri (Q)
Ld 0.0023 | 0.0155 | 098 460 | 00305 ] 1.72 153 6.18 . o
Fig. 8. The distribution of the model elemeris, and R; when the second

Ls 0.0023 ] 0.0169 | 00047 | 036 | 00310 | 3.65 | 0089 | 218 robustness test is done with the paramdtgrfixed at its correct value. The
Re 0 0 0 0 0 0 0 0 distribution of the element values is now Gaussian.
Rd 00134 | 00851 19 93.15 [ 00542 | 935 | 3027 | 130386 TABLE IV
Rs 0.0019 | 0.0120 | 275 17.27 | 00231 | 1,98 501 42,43 THE AVERAGE AND MAXIMUM % ERROR IN 100 EXTRACTIONS OF THE

13 BEEMENT FET MoDEL FROM PERFECT DATA USING [6],

. . . . FOR R, BoTH FREE AND FIXED AT ITS CORRECT VALUE
3) The accuracy with which the parasitic resistanégs

and R, and the channel resistandg could be found Re Free Rg bixed
Varied from example to example. Transistor 1 Transistor 2 Transistor | Transistor 2
4) Most of the extracted element values occur in a venf2@meer | Ave | Max | Ave | Max | Ave |Max | Ave | Max
narrow range around the correct value. However, fronts 011 | 191 | 372 ] 6333 337 | 7136 | 013 ] 044
the histograms, it can be observed that the lowest 033 { 419 | 688 | 15993 | 197 | 4147 | 00027 | 042
concentration of extracted-parameter values occurs ifids 024 | 324 | 703 | 90 | 040 | 631 | 1036 | 454
the middle (near the correct element value) of thesm 466 | 7166 | 830 | 5268 | 735 | 8489 | 050 | 211
distribution, which is somewhat contrary to the behaviortau 26,13 | 400 | 1078 | 39398 | 2937 | 400 | 016 | 4.80
of normal statistical processes. Ri 919 | 90 | 1244 | 400 | 444 | 90 | 160 | 7.20
The unexpected distribution is also observed in the result&ds 086 | 1349 | 561 | 13827 | 141 | 1527 | 028 | 133
of the second robustness test where noise is added to the simu- 0085 | 460 | 276 | 5133 | 1163 | 26978 | 0032 | 022
lated measurements. Although the added noise has a Gaussian 039 | 557 | 1287 | 90 | 095 | 1557 | 093 | 417
magnitude distribution, the distribution of the parameter valuess 036 | 673 | 234 | 4533 | 1348 | 31586 | 011 | 045
is decidedly non-Gaussian. The following two mechanisms areg 16384 | 400 | 13434 | 400 0 0 0 0
mainly responsible for this phenomenon. Rd 071 | 2055 | 22148 | 400 | 063 | 2502 | 1950 | 84m1
1) The Distribution of Local Minima Close to the Global g, 247 | 1985 | 3547 | 400 185 | 3843 | 390 | 1747

Minimum: This is a phenomena that is dependent on the
shape of the multidimensional error function, and it canné€ obscured by measurement uncertainty and the small errors
be described using statistical methods [10]. As these minifitde in the extraction of the other model elements. Due to
are very close to the global minimum, one can expect tfis, there is no correlation between the value of the global-
algorithm to converge to these minima more often than to t&ror function and the error made in the extraction Ryf.
correct value. Despite this, Novotny and Kompa [11] found that whip is
2) The Low Level of Added Nois&hese perturbations canfixed at its correct value, and there is a large increase in the
be described with statistical distributions, but in order for th@verall extraction accuracy. Table Ill shows the results of the
histograms of the extracted element values to reflect thé@dustness tests performed wikt), fixed at its correct value,
distributions, the noise has to be the dominant factor th4pile Fig. 8 shows the distributions of the extracted values
causes extraction errors. for the elements”,, and R; for transistor two. It should be
The second test also illustrates that the uncertainty f9ted that the distributions are now Gaussian, indicating that
the determination of the less dominant parameters grea‘ﬁ&? influence of the local minima has been greatly reduced.
increases in the presence of imperfections in the data. This ) .
is especially true for the parasitic resistandgs Ry, R,, and B. Experimental Results for the Algorithm of Kondoh [6]
the channel resistancg;. The first robustness test was also performed on the original
R, is the model element that is the most difficult talgorithm proposed by Kondoh. The test was done \ithas
determine because of the small influence it has on the valp@rt of the optimization problem and repeated withfixed at
of the global-error function. This causes the valueltf to its correct value. Table 1V contains the results. Figs. 9 and 10
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Fig. 9. Convergence diagram and histograms for the first robustness
using the Kondoh algorithm fo€g. and 7.
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Fig. 10. Convergence diagram and histograms for the first robustness
using the Kondoh algorithm foR2; and Rz.

provides a graphical representation of the extraction results f¢3]

the dominant elemeniS,, andr, and for the two insensitive

elementsR; and R, for transistor one. It can clearly be seen
that v gets caught in local minima for quite a number of[4]
starting values. Although not being the least sensitive element
in the model,r is optimized last in the sequence proposed

by Kondoh. This has the added effect of causigto be
determined incorrectly.

The results summarized in Table IV can be misleading. Thes]

algorithm described in [6] can provide accurate extractio

but due to the fact that it is more susceptible to local minim
it gets caught far from the correct solution more often. This[

leads to a higher average error.
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the extraction accuracy obtained for both methods, but it does
not prevent the sensitive elements from getting stuck in local
minima for the Kondoh algorithm.

Although the extraction accuracy obtained with [6] is still
very high for most of the extractions in test one, the procedure
is not as robust or accurate as the new adaptive optimization
sequence.

VII. CONCLUSION

Rigorous test results have been presented for the new adap-
tive decomposition-based optimization procedure proposed in
[5]. The results show the accuracy and insensitivity of the
parameter extractor to optimization starting values. Robustness
tests were performed on the procedure using user-defined
data, allowing an absolute level of accuracy to be determined.
ithe tests show that care has to be taken when present-
ing the extraction results since normal statistical descriptions
such as mean and standard deviation may not be appro-
priate due to the shape of the histograms. The tests also
confirm the large influence that the elemerj has on the
extraction accuracy that can be obtained and the difficulty of
determining this element from only one set of measused
parameters. The convergence of the new procedure and the
role this plays in the improved robustness of this method have
been discussed.

The results presented in this paper has been generated
with in-house software written iIFRORTRAN 77 and compiled
on a variety of systems. Executing the program on an SGI
Power Indigo workstation with a 195-MHz R10000 processor
typically took about 16 s for one extraction.
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