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Performance and Limitations of Decomposition-
Based Parameter-Extraction Procedures
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Abstract—A recently proposed optimizer-based parameter-
extraction technique using adaptive decomposition is subjected
to a systematic and rigorous evaluation. The technique is shown
to be robust and accurate under varying starting conditions. A
study of convergence performance based on decomposition theory
and test results is presented. Robustness tests are used to show
that commonly used statistical descriptions such as mean and
standard deviation are inadequate for presenting these types of
test data.

Index Terms—Decomposition, MESFET, parameter extraction,
optimizer.

I. INTRODUCTION

T HE design and analysis of millimeter-wave nonlinear
circuits increasingly require accurate nonlinear models.

Most of the currently available models in computer-aided
design (CAD) packages are of the equivalent-circuit type and,
despite efforts to develop black-box and fast physical models,
it is expected that these models will still be prominent for some
time. This is mainly due to their computational efficiency,
availability in commercial programs, and the ease with which
they can be integrated into existing design techniques.

A key step in the construction of lumped-element nonlinear
models is the extraction of the small-signal equivalent circuit
from -parameters at different bias settings. Fig. 1 shows the
13-element small-signal model that is most often used to
describe the GaAs MESFET. Until recently, the extraction of
this model was performed using standard gradient and random
optimizers [1] or with the aid of analytical techniques [2].
The first approach can lead to nonphysical and nonunique
solutions, while the second relies on additional measurement
steps or special structures. Analytical methods are faster than
optimizer-based methods, but they are susceptible to measure-
ment errors and their implementation is device specific.

In the last few years, new parameter-extraction methods
have been published, which strive to overcome these limita-
tions. Lin and Kompa [3] demonstrated an extraction technique
which, by using a bidirectional multiplane search, reduces the
dimensions of the optimization problem to improve robustness
and efficiency. Shirakawaet al. [4] published an extraction
technique with some features similar to the method of Lin
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Fig. 1. The standard 13-element MESFET model.

and Kompa. Both these extraction methods only optimize
the extrinsic components of the model (shown in Fig. 1)
while using analytical methods to determine the intrinsic
components. Both achieve good results.

Van Niekerk and Meyer [5] recently demonstrated a very
robust and powerful parameter-extractor based on the method
proposed by Kondoh [6]. Kondoh showed that good results can
be achieved by breaking the optimization problem into eight
subfunctions and optimizing the different model elements only
with respect to specific subfunctions. The eight subproblems
are iteratively repeated in a specific order until the model
elements have converged to their final values. Van Niekerk and
Meyer extended this method by using the maximum number
of subproblems, and optimizing them in a sequence in which
the order is calculated with a principle components sensitivity
analysis. The decomposition process used in the new procedure
is, therefore, adaptive, and not based on experimentation, such
as in [6].

No rigorous test results of decomposition-based parameter-
extraction algorithms have been presented in the literature. In
particular, the effects of starting values and the final distribu-
tion of results have been largely neglected. In this paper, the
results of such tests are presented for the algorithm proposed
in [5], and for the original algorithm proposed by Kondoh
[6]. Robustness tests are performed using a large number of
randomly chosen element starting values for each extraction.
Histograms of the extracted-element values reveal them not
to conform to often used standard statistical distributions, and
the reasons for this are discussed.
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In addition, a detailed look at the fundamental convergence
mechanisms is presented, as the convergence behavior of
decomposition-based optimization has only been touched on
very lightly in the past. It is shown why these algorithms
display superior performance with respect to problems like
local minima.

Finally, a general discussion of the principle components’
sensitivity analysis—the key to the basic algorithm—is also
presented.

II. THE THEORY OF DECOMPOSITION-BASED

PARAMETER EXTRACTION

Decomposition is defined as a process by which a function
that is to be optimized is broken up into several subfunctions.
The independent variables of the function are divided into
groups according to their influence on a particular subfunction.
Should the th variable have its largest influence on theth
subfunction, it is assigned to that function. The subfunctions
are optimized in a specific order, and only with respect to the
variables assigned to them. This order is repeated until the
whole problem has converged to its final value.

In the FET parameter-extraction problem, the global-error
function that is to be optimized is defined as

(1)

where

(2)

In (1), is the difference between the measured and
modeled -parameters at frequency point, is the parameter
vector containing the element values of the circuit shown in
Fig. 1, and is the number of frequency points. Equation
(2) shows the definition of , where is the modeled -
parameter, is the measured-parameter at frequency point
, and is a normalization constant equal to the magnitude of

the largest measured-parameter value.
The difference between each of the four measured and

modeled -parameters is defined as a subfunction. Bandler
and Zhang [7] developed an automated approach for assigning
model elements to the different subfunctions using a Monte
Carlo analysis, which confirmed the assignment of model
elements to subfunctions proposed by Kondoh. This assign-
ment has been retained in the current extraction method.
It is important to note that Kondoh did not optimize all
the model parameters across the complete set of frequency
points. This subdivision in frequency is not used in the new
method of Van Niekerk and Meyer [5] since it was found to
not provide any accuracy improvements. Kondoh subdivided
his optimization problem to obtain eight subproblems. The
level of decomposition was extended in the new optimization
procedure to allow for maximum decomposition. Every model
element is optimized on its own, leading to a number of one-
dimensional suboptimization problems equal to the number

TABLE I
ELEMENT VALUES FOR TWO EXAMPLES

of model elements. Table I shows the assignment of model
elements to the different suboptimization problems.

The different suboptimization problems are not linearly
independent [7]. In order to ensure convergence, they have to
be solved in a specific sequence, which is repeated until all the
model elements have converged to their final values. Kondoh
determined his optimization sequence through experimentation
[6], while Bandler and Zhang demonstrated an adaptive algo-
rithm that determines the optimization sequence as a function
of the subfunction error and dimensions.

In the new decomposition algorithm, the order of op-
timization is based on the sensitivity of the global-error
function to the model elements. A principle components
sensitivity analysis [5], [8] is used to order the model elements
in descending order of their influence on the global-error
function. The suboptimization problems are then optimized
in this order. This allows the dominant model elements to get
close to their correct values faster, providing the other elements
with a better chance of converging.

The sensitivity analysis used to calculate the order of
optimization was presented by Pattersonet al. [8] to improve
the conditioning of a conventional multidimensional gradient
search as performed on a global-error function. In order to
distinguish between maxima, minima, and saddle points, a
second-order analysis was used. The error function is
expanded in a Taylor series around the optimal point. Equation
(3) shows this series, truncated at the second term, whereis
the optimal set of element values at which is a minimum,
and is a small difference:

(3)

The Hessian matrix can be approximated with

(4)
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where is the Jacobian matrix [8]. The Jacobian matrix is
defined as

...
...

...

(5)

where is defined in (2) and to represent the model
elements shown in Fig. 1.

Patterson shows that the eigenvalues of the Hessian ma-
trix determines the sensitivity of the error function to the
model elements, with those to which the error function is
the most sensitive, corresponding to the largest eigenvalues.
By looking at the largest components of the eigenvectors of
the different eigenvalues, the model elements can be ordered
from the most to least sensitive. The principle components’
sensitivity analysis can, therefore, be viewed as the study of
the eigenvalues and eigenvectors of the Hessian matrix. An
example illustrating how this is done is presented in [5].

III. EVALUATION PROCEDURE

The aim of this paper is to provide a rigorous evaluation
of the performance of the method proposed by Van Niekerk
and Meyer [5], together with a comparison of the results with
earlier algorithms. In order to achieve this, the algorithm was
tested with simulated data to provide an absolute measure
for determining accuracy. Simulated data was generated using
the model in Fig. 1 and the element values shown in Table I.
The element values listed in Table I describes the FLR016XV
(transistor 1) and the FHR02X (transistor 2) devices from
Fujitsu.1 The -parameters were generated at 40 frequency
points, from 1 to 40 GHz.

Two tests were performed to determine the accuracy and
robustness of the extraction procedure. In the first test, 100
random starting values were chosen in the search space using
a uniform distribution. The search space ranged from 0.1 times
to five times the nominal parameter values given in Table I.
An extraction was performed using each set of starting values.
A similar procedure was used for the second test, but at
the start of each extraction, the simulated-parameters were
contaminated with noise. The noise was defined to have a
Gaussian magnitude distribution and a uniform phase distri-
bution between 0 and radians. The magnitude distribution
has a standard deviation of 2% of magnitude of the measured
-parameter. The second test used 500 random starting values.
The results of the study can be divided between those related

to the optimization sequence, convergence of the algorithm,
and the accuracy of the final values.

IV. THE OPTIMIZATION SEQUENCE

When the optimization sequences of different examples
are compared with one another, a basic pattern emerges.

1Fujitsu Microwave Semiconductors Databook, Fujitsu Compound Semi-
conductors Inc., San Jose, CA, 1994.

Fig. 2. Normalized amplitude of the Jacobian matrix calculated for the first
example given in Table I. The rows correspond with the sequence of the model
elements in Table I. (a) The whole matrix, illustrating the dominant rows
corresponding to the intrinsic capacitors. (b) The matrix with these columns
set to zero to show the inductors and the channel delay� as the next level
of dominant elements.

Capacitors are always dominant, followed byand the ex-
trinsic inductances. The intrinsic and extrinsic resistors and
the transconductance are always the least sensitive elements
in the model. Table I presents the optimization sequences for
two MESFET’s as an example.

This behavior can be explained by a detailed look at the
principle components’ sensitivity analysis, which is normally
viewed as a study of the Hessian matrix, but which is very
similar to the Karhunen–Lóeve (KL) transformation used
in digital signal processing to identify the less important
dimensions of a problem. The KL transform is applied to a data
matrix consisting of -dimensional vectors, which describe
a system. This matrix does not need to be symmetrical. A
Hessian matrix is generated by premultiplying the data matrix
with its transpose, followed by an eigenvector/eigenvalue
analysis. As this process is, in effect, used to analyze the data
matrix, the principle components’ sensitivity analysis can, in
a similar vein, be said to analyze the Jacobian matrix.

Relating the sensitivities to the Jacobian matrix has the
advantage of allowing a one-to-one correspondence between
the rows of the matrix and the model elements, something
which is lost in the calculation of the Hessian matrix. Fig. 2
shows the normalized amplitude of a representative Jaco-
bian matrix. It is clear that the elements with the largest
frequency dependence corresponds to the most prominent
columns of the matrix, which will account for their prominence
in the sensitivity analysis. In contrast, the importance of the
frequency-independent elements, such as the resistors and the
transconductance, is related more to their position in the model
and their size. The position of a model element in the order of
optimization is, therefore, determined by the following three
factors (in order of importance):

1) frequency dependence of the element value;
2) magnitude of the element value;
3) position of the element in the model.

These three criteria provides us with rough indicators
as to how the sensitivity analysis works and what really
influences the order of optimization. The effect of the starting
point of the search is not included in this discussion, but
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Fig. 3. The change in the global error (complete objective function) as the
search progresses.

differences in starting values and measured data do have
small influences on the order of optimization. This is because

is also a function of both the model element values and
the measured data [see (2)].

V. CONVERGENCE CONSIDERATIONS

No conclusive theoretical work is available to explain
why the decomposed optimization process converges to the
correct solution. Kondoh [6] found that the order in which the
functions are to be optimized is crucial for convergence, and
Bandler and Zhang [7] showed that this was due to the fact
that the defined subfunctions are not linearly independent.

In this section, new results concerning the convergence of
the decomposition-based algorithm are presented. The con-
vergence of the algorithm can be divided into two regions.
In the first region, there occurs what can best be described
as the preconvergence maneuvering of the model elements.
During this phase, the model-element values change quickly,
covering the whole search space in no apparent pattern.
This is accompanied by large increases and decreases in the
global error, giving the impression that the search routine
is hill climbing. During this phase, the model elements will
frequently run into the boundaries of the optimization space,
and may stay there for more than one iteration of the search.
This behavior is illustrated in Figs. 3 and 4. Fig. 5 shows how
the global objective function differs from the subfunction that
is being optimized during phase one, and how rapidly the shape
of the objective function changes from iteration to iteration.
All the element values, except one, were fixed at their value
after the shown number of iterations, and the free variable
was varied around its current value. Fig. 5 contains both the
normalized global and subfunction errors as a function of the
free variable and, thus, the optimization landscape seen by the
algorithm at that iteration.

The behavior during phase one can be understood by
looking at the relationships between the elements. Since the
dominant model elements are initially far from their correct
values, they will have a large influence on one another
and on the other less dominant model parameters. This will
increase the dependance of the decomposed functions on one
another, explaining the violent changes in element values and

Fig. 4. The change in the element values for three typical parameters of the
13-element model as the search progresses.

Fig. 5. The change in the landscape seen by the search routine for the
elementCgs. The y-axis represents both the subfunction- and global-error
function values, both normalized to one (– – –: subfunction error, —: global
error).

the global-error function that is evident during the first few
iterations of the search.

The second phase of the algorithm’s convergence is also
evident from Figs. 3 and 4. During this part, the algorithm
converges smoothly to the final solution. A comparison of
the normalized subfunction and the normalized global-error
function in Fig. 5 shows that they approximate each other
in the region of the solution, indicating that by minimizing
the subfunction, the algorithm also minimizes the global-error
function in the second phase of convergence.

The decomposed optimization algorithms are by no means
globally convergent and can still be caught in local minima
if the search is started too far from the global minimum. The
routines are, however, far more robust than most conventional
search algorithms, and are capable of covering a far larger
search area. This robustness is due to the following reasons.

1) The functions that are optimized are less complex than
the global-error function. This reduces the amount of
local minima that pose a danger to the extraction process
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TABLE II
THE AVERAGE AND MAXIMUM % ERROR IN 100 EXTRACTIONS OF

THE 13-ELEMENT FET MODEL FROM IDEAL AND NOISY DATA

since the subfunctions are not evaluated simultaneously
and the global-error function is not used for any deci-
sions during the search.

2) The functions being optimized display a high degree of
sensitivity to the model elements associated with them.

3) The order in which the subfunctions are repeatedly opti-
mized leads to highly consistent extraction results. There
are a large group of optimization sequences that will
allow the decomposition-based optimization procedure
to converge, but they are not equivalent in terms of
the accuracy that can be obtained and the amount of
iterations needed for the routine to converge.

The first robustness experiment was also repeated using
a larger search space. Model-element starting values were
chosen in the ranges of 0.05–10 times the nominal element
values and 0.033–20 times the nominal element values. Both
ranges caused some of the extractions in the experiments not
to converge to the correct answer. These extractions were easy
to identify since most of the model elements would take on
values close to the optimization boundaries and, in some cases,
the final global error was larger than the global error at the
start of the search. However, better than 90% of the extractions
converged to the correct element values.

VI. A CCURACY OF FINAL VALUES

A. Results of the Principle Components’
Sensitivity-Analysis-Based Extraction Procedure

Table II contains the percentage error made in the final
values of the model elements for both tests for the two
transistor examples defined in Table I. Both the maximum and
mean error are provided. The accuracy of the method is clear.

A novel representation of the performance of the algorithm
is shown in Figs. 6 and 7. The-axes represent 100 extractions
performed during the tests, while the-axes represent the
element values. Each circle shows the starting value for that
particular element for one search, while the solid line shows

Fig. 6. Converge diagram and histogram for model elementsCgs and� for
test one. Circles indicate the starting values for each extraction and the solid
line the final values.

Fig. 7. Converge diagram and histogram for model elementsRi andRg for
test one. Circles indicate the starting values for each extraction and the solid
line the final values.

the final value. Ideally, one should see a perfect horizontal line
for the final values, representing no variation in the extracted
value. The variation of the solid line from the perfect straight
line gives a clear graphical view of the sensitivity of the final
values to the starting values.

Results are presented for the first test for two dominant
model elements ( and ) and for the two least sensitive
elements ( and ) for transistor one. The channel resistance

and the parasitic gate resistanceare of particular interest
because of their positions in the model and their electrical
equivalence. This makes the determination of their individual
values very difficult [8].

A study of the information obtained from various extraction
examples revealed the following.

1) Not all parameter-extraction problems can be solved
with equal accuracy. This is similar to conclusions
reached by Curtise [1].

2) All the parameters, with the exception of , could be
extracted with high accuracy.
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TABLE III
THE AVERAGE AND MAXIMUM % ERROR IN 100 EXTRACTIONS OF

THE 13-ELEMENT FET MODEL FROM PERFECT AND NOISY

DATA WHEN Rg IS FIXED AT ITS CORRECT VALUE

3) The accuracy with which the parasitic resistances
and and the channel resistance could be found
varied from example to example.

4) Most of the extracted element values occur in a very
narrow range around the correct value. However, from
the histograms, it can be observed that the lowest
concentration of extracted-parameter values occurs in
the middle (near the correct element value) of the
distribution, which is somewhat contrary to the behavior
of normal statistical processes.

The unexpected distribution is also observed in the results
of the second robustness test where noise is added to the simu-
lated measurements. Although the added noise has a Gaussian
magnitude distribution, the distribution of the parameter values
is decidedly non-Gaussian. The following two mechanisms are
mainly responsible for this phenomenon.

1) The Distribution of Local Minima Close to the Global
Minimum: This is a phenomena that is dependent on the
shape of the multidimensional error function, and it cannot
be described using statistical methods [10]. As these minima
are very close to the global minimum, one can expect the
algorithm to converge to these minima more often than to the
correct value.

2) The Low Level of Added Noise:These perturbations can
be described with statistical distributions, but in order for the
histograms of the extracted element values to reflect these
distributions, the noise has to be the dominant factor that
causes extraction errors.

The second test also illustrates that the uncertainty in
the determination of the less dominant parameters greatly
increases in the presence of imperfections in the data. This
is especially true for the parasitic resistances, , , and
the channel resistance .

is the model element that is the most difficult to
determine because of the small influence it has on the value
of the global-error function. This causes the value of to

Fig. 8. The distribution of the model elementsCgs andRi when the second
robustness test is done with the parameterRg fixed at its correct value. The
distribution of the element values is now Gaussian.

TABLE IV
THE AVERAGE AND MAXIMUM % ERROR IN 100 EXTRACTIONS OF THE

13 ELEMENT FET MODEL FROM PERFECT DATA USING [6],
FORRg BOTH FREE AND FIXED AT ITS CORRECT VALUE

be obscured by measurement uncertainty and the small errors
made in the extraction of the other model elements. Due to
this, there is no correlation between the value of the global-
error function and the error made in the extraction of.
Despite this, Novotny and Kompa [11] found that when is
fixed at its correct value, and there is a large increase in the
overall extraction accuracy. Table III shows the results of the
robustness tests performed with fixed at its correct value,
while Fig. 8 shows the distributions of the extracted values
for the elements and for transistor two. It should be
noted that the distributions are now Gaussian, indicating that
the influence of the local minima has been greatly reduced.

B. Experimental Results for the Algorithm of Kondoh [6]

The first robustness test was also performed on the original
algorithm proposed by Kondoh. The test was done withas
part of the optimization problem and repeated withfixed at
its correct value. Table IV contains the results. Figs. 9 and 10
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Fig. 9. Convergence diagram and histograms for the first robustness test
using the Kondoh algorithm forCgs and � .

Fig. 10. Convergence diagram and histograms for the first robustness test
using the Kondoh algorithm forRi andRg.

provides a graphical representation of the extraction results for
the dominant elements and , and for the two insensitive
elements and for transistor one. It can clearly be seen
that gets caught in local minima for quite a number of
starting values. Although not being the least sensitive element
in the model, is optimized last in the sequence proposed
by Kondoh. This has the added effect of causing to be
determined incorrectly.

The results summarized in Table IV can be misleading. The
algorithm described in [6] can provide accurate extractions,
but due to the fact that it is more susceptible to local minima,
it gets caught far from the correct solution more often. This
leads to a higher average error.

A comparison of the results in Table IV and Figs. 9 and
10 with those presented in Table II and Figs. 6 and 7 reveals
the following: the sensitive elements of the model that are
placed low down in the optimization sequence in [6] is
more likely to get caught in local minima than in the new
algorithm. This will also cause the insensitive elements to be
determined incorrectly. Fixing at its correct value improves

the extraction accuracy obtained for both methods, but it does
not prevent the sensitive elements from getting stuck in local
minima for the Kondoh algorithm.

Although the extraction accuracy obtained with [6] is still
very high for most of the extractions in test one, the procedure
is not as robust or accurate as the new adaptive optimization
sequence.

VII. CONCLUSION

Rigorous test results have been presented for the new adap-
tive decomposition-based optimization procedure proposed in
[5]. The results show the accuracy and insensitivity of the
parameter extractor to optimization starting values. Robustness
tests were performed on the procedure using user-defined
data, allowing an absolute level of accuracy to be determined.
The tests show that care has to be taken when present-
ing the extraction results since normal statistical descriptions
such as mean and standard deviation may not be appro-
priate due to the shape of the histograms. The tests also
confirm the large influence that the element has on the
extraction accuracy that can be obtained and the difficulty of
determining this element from only one set of measured-
parameters. The convergence of the new procedure and the
role this plays in the improved robustness of this method have
been discussed.

The results presented in this paper has been generated
with in-house software written inFORTRAN 77 and compiled
on a variety of systems. Executing the program on an SGI
Power Indigo workstation with a 195-MHz R10000 processor
typically took about 16 s for one extraction.
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